Title: Bitcoin Indicator Formula Code

```python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

def moving_average(data, window):

return data.rolling(window=window).mean()

def exponential_moving_average(data, window):

return data.ewm(span=window, adjust=False).mean()

def relative_strength_index(data, window):

delta = data.diff()

gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()

loss = (delta.where(delta < 0, 0)).rolling(window=window).mean()

rs = gain / loss

return 100 (100 / (1 rs))

def stochastic_oscillator(data, window):

low_min = data.rolling(window=window).min()

high_max = data.rolling(window=window).max()

return ((data low_min) / (high_max low_min)) * 100

def macd(data, short_window, long_window, signal_window):

short_ema = exponential_moving_average(data, short_window)

long_ema = exponential_moving_average(data, long_window)

macd_line = short_ema long_ema

signal_line = exponential_moving_average(macd_line, signal_window)

return macd_line, signal_line

Example usage

if __name__ == "__main__":

Load Bitcoin price data (replace with your data)

btc_data = pd.read_csv('bitcoin_price.csv')

Calculate indicators

btc_data['MA_50'] = moving_average(btc_data['Close'], 50)

btc_data['EMA_200'] = exponential_moving_average(btc_data['Close'], 200)

btc_data['RSI_14'] = relative_strength_index(btc_data['Close'], 14)

btc_data['%K'] = stochastic_oscillator(btc_data['Close'], 14)

btc_data['%D'] = moving_average(btc_data['%K'], 3)

btc_data['MACD'], btc_data['Signal_line'] = macd(btc_data['Close'], 12, 26, 9)

Plotting

plt.figure(figsize=(14, 7))

plt.plot(btc_data['Close'], label='Bitcoin Price', color='blue')

plt.plot(btc_data['MA_50'], label='50Day Moving Average', color='red')

plt.plot(btc_data['EMA_200'], label='200Day Exponential Moving Average', color='green')

plt.legend(loc='upper left')

plt.title('Bitcoin Price with Moving Averages')

plt.xlabel('Date')

plt.ylabel('Price (USD)')

plt.show()

```

This code provides functions to calculate commonly used technical indicators for Bitcoin:

1.

Moving Average (MA)

: Both Simple Moving Average (SMA) and Exponential Moving Average (EMA) are provided.

2.

Relative Strength Index (RSI)

: This measures the magnitude of recent price changes to evaluate overbought or oversold conditions in the price of a stock or other asset.

3.

Stochastic Oscillator

: It compares the current closing price with the range of prices over a certain period to indicate overbought or oversold conditions.

4.

Moving Average Convergence Divergence (MACD)

: This is a trendfollowing momentum indicator that shows the relationship between two moving averages of a security’s price.

You can replace `'bitcoin_price.csv'` with your Bitcoin price data file. After calculating the indicators, you can use them for analysis or visualization. This code also includes an example plot of Bitcoin price with Moving Averages.

免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!

分享:

扫一扫在手机阅读、分享本文